If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1250=100t+16t^2
We move all terms to the left:
1250-(100t+16t^2)=0
We get rid of parentheses
-16t^2-100t+1250=0
a = -16; b = -100; c = +1250;
Δ = b2-4ac
Δ = -1002-4·(-16)·1250
Δ = 90000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{90000}=300$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-300}{2*-16}=\frac{-200}{-32} =6+1/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+300}{2*-16}=\frac{400}{-32} =-12+1/2 $
| 4(1+5b)=7 | | 0=9(x^2)-x-2 | | (x+4)(x+9)/2(x-4)=99 | | 40x+24x=800 | | 168=(180(n-2))/n | | 1168=(180(n-2))/n | | 40x+16(1.5x)=800 | | 168=(180(n-2))/2 | | 2n^2-5n-45=0 | | 3z/10-3=-5 | | 0=8(x^2)+8x-1 | | 10y-4(y+2)+3×=5(3-×) | | 2x−712−4−x6=1320 | | 2y^2+160y=6300 | | 3x+2/2=4x-9 | | -1-4x-3x=41 | | x/x=12000000 | | -2x-1/2=1/3x-43/2 | | 4+2x=7x+4 | | 9x^2-16/x^2=40 | | 2(x^2)+5x-1=0 | | 13v+26=26 | | 0=(y^2)-9y+18 | | -10-5x=7x+38 | | 5t=2t-6 | | 0=(w^2)+6w+5 | | x+9+8=15 | | 5(3x+8)=16-3(x-8) | | 6x+7-4x=31 | | 0=(u^2)-6u+9 | | 0=(u^2)-6u-7 | | 4/2x-1=-2/7 |